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The analytical investigation of vibration of damaged structures is a complicated problem.
This problem may be simpli"ed if a structure can be represented in the form of a beam with
corresponding boundary and loading conditions. In this connection, free vibrations of an
elastic cantilever Bernoulli}Euler beam with a closing edge transverse crack is considered in
the present work as a model of a structure with a fatigue crack. The modelling of bending
vibrations of a beam with a closing crack is realized based on the solutions for an intact
beam and for a beam with an open crack. The algorithm of consecutive (cycle-by-cycle)
calculation of beam mode shapes amplitudes is presented. It is shown that at the instant of
crack opening and closing, the growth of the so-called concomitant mode shapes which
di!er from the initially given mode shape takes place. Moreover, each of the half-cycles is
characterized by a non-recurrent set of amplitudes of concomitant modes of vibration and
these amplitudes are heavily dependent on the crack depth.

The vibration characteristics of damage based on the estimation of non-linear distortions
of the displacement, acceleration and strain waves of a cracked beam are investigated, and
the comparative evaluation of their sensitivity is carried out.
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1. INTRODUCTION

Many mechanical structures in real service conditions are subjected to combined or
separate e!ects of the dynamic load, temperature and corrosive medium, with a consequent
growth of fatigue cracks, corrosive cracking and other types of damage. The immediate
visual detection of damage is di$cult or impossible in many cases and the use of local
non-destructive methods of damage detection requires time and "nancial expense and
frequently is ine$cient.

In this connection, the use of vibration methods of damage diagnostics is promising.
These methods are based on the relationships between the vibration characteristics (natural
frequencies [1}3] and mode shapes [4]) or peculiarities of a non-linear vibration system
behaviour (for example, non-linear distortions of the displacement wave in di!erent
cross-sections of a beam [5, 6], the amplitudes of sub-resonance and super-resonance
vibrations [7], the anti-resonance frequencies [8], etc.) and damage parameters. It is
important to note that the essential non-linearity of vibrations of a body with a fatigue
crack is due to the change of sti!ness at the instant of crack opening and closing and is the
main di$culty in the solution of such class problems.

The analytical investigation of vibrations of damaged structures is a complicated
problem. This problem may be simpli"ed if a structure can be represented in the form of
0022-460X/02/010023#18 $35.00/0 ( 2002 Academic Press
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a beam with corresponding boundary and loading conditions. This class of structures can
include bridges, o!shore platforms, pipelines, masts of electricity transmission, TV towers,
aircraft wings, blades and rotors of turbine engines, propellers of helicopters and many
others.

In earlier work [9], the solution of the problem of the bending vibrations of a cantilever
beam with a closing crack during the "rst cycle of vibration was described. It was shown
that at the instant of crack opening, the so-called concomitant mode shapes di!er from the
initially given mode shape. This approach to the solution of the problem can be extended
not only over the "rst but also over the subsequent cycles.

The present work is a logical continuation of that research [9]. Therefore, the aim of the
study is to develop the algorithm of consecutive (cycle-by-cycle) calculation of cracked
beam mode shapes amplitudes, to investigate the regularities of concomitant mode shapes
origination, and to study the level of non-linear distortions of the displacement, acceleration
and strain waves.

2. MODELLING OF VIBRATION OF A BEAM WITH A CLOSING CRACK

The modelling of free bending vibrations of a beam with a closing crack is based on the
solutions for an intact beam and for a beam with an open crack [9].

Free bending vibrations of a beam neglecting the damping e!ect are described by the
di!erential equation:
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where E and o are the Young's modulus and the density of the beam material respectively,
I"bh3/12 and A"bh are the moment of inertia and area of the cross-section respectively,
b and h are the width and height of cross-section respectively.

The general solution of equation (1) can be presented in the following form:

y(x, t)"
=
+
i/1

w
i
(x) (P

i
sinu

i
t#R

i
cosu

i
t), (2)

where w
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are the mode shapes and natural angular velocities respectively, and i is

the number of the mode shape. The mode shapes of the beam are described by the
expression
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in expression (3) are determined from the boundary conditions

for the cantilever beam (Figure 1):
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where h (x) is the angle of rotation of the cross-section x, M (x) is the bending moment, Q(x)
is the transverse force, ¸ is the length of the beam, m

L
is the mass on the end, and I

m
is the

moment of inertia of the mass.



Figure 1. Geometry of a cantilever beam with an edge closing crack.
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The characteristic equation in this case assumes the form
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As distinct from reference [9], a beam with an open-edge crack is modelled here by two
sections connected by means of the cross-section with an increased compliance [10] located
at a distance ¸

c
from the clamped end. Free bending vibrations of each section neglecting

the damping e!ect are described by the di!erential equation (1) in which I"I
j

is the
cross-sectional moment of inertia of the section number j ( j"1, 2). In this case, I

1
"I

2
"I.

The general solution of equation (1) for the section number j takes the form
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are the mode shapes of the section number j, k4
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velocity of a beam with an open crack (subscript &&o'' signi"es an open crack). From
expression (7) with the boundary conditions in equation (4) the functions describing the
angle of rotation h

ij
(x), bending moment M

ij
(x) and transverse force Q
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(x) can be derived.

The boundary conditions at the clamped end (x"0) and free end (x"¸) of the beam and
conditions of compatibility of sections 1 and 2 (x"¸

c
) will be [10]
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where d
c
is the change of compliance of the cross-section with the crack.

Taking into consideration the fact that S(0)"1, ¹(0)";(0)"< (0)"0 and the "rst two
boundary conditions, it can be shown that A

i2
"B

i2
"0. Residuary boundary and
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compatibility conditions determine the set of equations, the determinant of which takes the
form
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The solution of the characteristic equation (8) and of the set of equations determines the
natural frequencies and mode shapes of the beam with an open crack (it is accepted here
that M

i2
(0)"M (0)).

The compliance of the cross-section with a crack is determined using linear fracture
mechanics. In the linear elastic body, the change of strain energy due to crack presence of
the mode I deformation with the assumption of plane stress will be as follows [11]:
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where a is the crack depth. At the same time, the change of strain energy in the cracked
cross-section can be expressed via the change of its compliance:
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c
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Here, the expression for the stress intensity factor (SIF) obtained by Cherepanov for the case
of pure bending of a cracked strip [12] is used as
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where c"a/h. Using equations (9) and (10) with equation (11) gives
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It is interesting to note that the results of calculations of natural frequencies and mode
shapes (up to and including "ve modes) for a cantilever beam with the model of the crack
presented here and with a more complicated model of the crack in the form of a short
section with the reduced moment of inertia of the cross-section [9] were found to be the
same. In both cases equation (11) was applied. If use is made of other equations for the SIF,
then the results for the natural frequencies and mode shapes will be di!erent insofar as the
SIF values will be di!erent. For example, the discrepancy between the SIF values calculated
by the formulae from reference [13] and equation (11) reaches 13.2%. Thus, the justi"cation
of modelling vibration of a cracked beam if the energy approach is used depends mainly on
the choice of expression for the SIF and practically does not depend on the type of crack
model. The preference given here for equation (11) was justi"ed earlier [9].

The beam with a closing crack is modelled in the following way: at the half-cycles while
the crack is closed, the vibrations of the beam are described by equation (2) (it is presumed
that the sti!ness of the intact beam and the sti!ness of the beam with a closed crack are
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equal); at the half-cycles while the crack is open, the vibrations of the beam are described by
equation
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which di!ers from equation (6) only by the coe$cients of mode shapes P
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the initial conditions for the displacement, velocity and angle of rotation at a certain instant
of time with mode shape orthogonality (for details see reference [9]):
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It is assumed that on the "rst and subsequent odd half-cycles (n"1, 3, 5,2) the crack is
closed and on the even half-cycles (n"2, 4, 6,2 ) it is open. Initial conditions for
displacement, velocity, and angle of rotation of the cross-section and its velocity variation
on the "rst half-cycle (n"1) at the instant of time t

1
"0 have, respectively, the appearance:
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closing are denoted as concomitant. It is obvious that under the above-mentioned initial
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On the even half-cycles of vibrations, the coe$cients of mode shapes P
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determined by the formulae
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where m"oA is the beam mass per unit length,
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at the instants of time
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On the third and subsequent odd half-cycles of vibrations, the coe$cients of mode shapes
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are determined by the formulae
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The coe$cients of mode shapes for the odd and even half-cycles as well as the vibration
values averaged over N (even number) cycles were calculated by the formulae:
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In addition to the coe$cients (20), their maximal (Hmax
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) and minimal (Hmin
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values over N cycles were determined.

3. CRITERION FOR APPLICABILITY OF THE THEORY

The theory presented above is valid if the crack at the corresponding half-cycles is either
permanently open or closed. However, when concomitant modes of vibration arise this



TABLE 1

Coe.cients of the main and concomitant mode shapes for the beam with the crack location
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2 0/0)016 0)141/0)106 0)231/0)167
3 0/0)002 0)036/0)031 0)063/0)054

0)54 2 1 0/0)020 0)223/0)156 0)437/0)279
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3 0/0)071 0)175/0)142 0)380/0)299

0)48 3 1 0/0)004 0)210/0)162 0)367/0)272
2 0/0)005 0)203/0)158 0)437/0)342
3 0)818/0)695 0)913/0)778 1)0/0)850
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requirement is not always ful"lled. The permanence of the sign of the bending moment
serves as a criterion for applicability of the theory, which is calculated at the cracked
cross-section by the formulae

M
n
(¸

c
, t)"

=
+
i/1
C
L2w

i
(x)

Lx2 D
x/L

c

(P
n,i

sinu
i
t#R

n,i
cosu

i
t), (22)

M
n, c

(¸
c
, t)"

=
+
i/1
C
L2w

i1
(x)

Lx2 D
x/L

c

(P
n,ci

sin u
oi

t#R
n,ci

cosu
oi
t). (23)

Equation (22) is used on the odd half-cycles and equation (23) on the even half-cycles.
The relative crack depths shown in Table 1 are the upper limits of the theory's

applicability range obtained by the above criterion for the three mode shapes of the cracked
cantilever beam (¸/h"20, b/h"1, m

L
"0) with the crack location at ¸

c
/¸"0)1. These

values of relative crack depth were used in calculations, the results of which are also
indicated in Table 1. The results of calculations make it possible to conclude that each of the
half-cycles is characterized by a non-recurrent set of amplitudes of concomitant modes of
vibration and also that these amplitudes may reach substantial value; up to 44% of the
amplitude of main mode (see last column in Table 1). The amplitudes of concomitant modes
of the beam at the crack location ¸

c
/¸"0)5 at the upper limits of the relative crack depths

(c"0)43 for the "rst mode, c"0)68 for the second mode, c"0)30 for the third mode) were
lower than in the case at ¸

c
/¸"0)1.

It is necessary to note that the theory may be extended to the cases when the crack opens
and closes more than once over a half-cycle but it is evident that the procedure of vibration
simulation will become seriously complicated.

When the concomitant modes of vibration arise, the instants of time when the cracked
cross-section is in the neutral position would not coincide with the corresponding instants
of time determined by formulae (16) and (19). Therefore, for a numerical implementation of
the theory, the calculation of the actual instants of time for the determination of initial
conditions was arranged. As the investigations showed, the di!erence between these instants
of time and those determined by formulae (16) and (19) was found to be negligible in the
range of relative crack depth 0)c)0)25 as was the in#uence of this di!erence on the
coe$cients of mode shapes.
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4. VIBRATION CHARACTERISTICS OF A BEAM WITH A CLOSING CRACK

The experimental veri"cation [9] showed that the theory presented here makes it
possible to predict the change of natural frequencies and mode shapes of a cantilever beam
with a fatigue crack with su$cient accuracy. Furthermore, the testing of cracked specimens
[14] revealed that the "rst-mode vibrations of the specimens with fatigue cracks was
accompanied by the concomitant high modes of vibrations and that each cycle of vibration
was characterized by a non-recurrent set of high modes. Consequently, the theory proposed
here adequately describes the vibrations of a beam with a closing crack and can be used for
investigations of di!erent vibration characteristics of damage (VCD).

Subsequent investigations were restricted to the range of the relative crack depth
0)c)0)25 which is most interesting from the practical point of view. In this range of the
relative crack depth, the maximal and minimal amplitudes of the main and concomitant
modes of vibration and their values averaged over N cycles converge su$ciently fast to
certain magnitudes, when the vibrations are steady state. This conclusion is illustrated by
the results of calculation of the mode shapes coe$cients H
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n,ci
HM

i
/HM

ci
Hmax

n,i
/Hmax

n,ci
Hmin

n,i
/Hmin

n,ci
HM

i
/HM

ci
Hmax

n,i
/Hmax

n,ci

1 1)0/0)932 0/0 0/0)008 0/0)008 0/0 0/0)005 0/0)005
5 1)0/0)932 0/0)008 0)023/0)024 0)036/0)033 0/0)002 0)003/0)004 0)004/0)006

25 1)0/0)932 0/0)002 0)023/0)022 0)036/0)033 0/0)002 0)005/0)006 0)009/0)011
50 1)0/0)932 0/0 0)023/0)021 0)036/0)033 0/0)001 0)005/0)006 0)009/0)011

100 1)0/0)931 0/0 0)023/0)021 0)036/0)033 0/0)001 0)005/0)006 0)009/0)011
200 1)0/0)931 0/0 0)023/0)021 0)036/0)033 0/0)001 0)005/0)006 0)009/0)011

TABLE 2

Coe.cients of the ,rst main and concomitant mode shapes for the beam (a/h"0)25,
¸
c
/¸"0)1)

s"1 i"2 i"3

N HM
s
/HM

cs
Hmin

n,i
/Hmin

n,ci
HM

i
/HM

ci
Hmax

n,i
/Hmax

n,ci
Hmin

n,i
/Hmin

n,ci
HM

i
/HM

ci
Hmax

n,i
/Hmax

n,ci

1 1)0/0)957 0/0 0/0)008 0/0)008 0/0 0/0)001 0/0)001
5 1)0/0)957 0/0)005 0)008/0)010 0)014/0)015 0/0)001 0)004/0)005 0)008/0)008

25 1)0/0)957 0/0)002 0)009/0)010 0)015/0)015 0/0)001 0)007/0)007 0)011/0)010
50 1)0/0)957 0/0)002 0)009/0)010 0)015/0)015 0/0)001 0)007/0)006 0)011/0)010

100 1)0/0)957 0/0)002 0)009/0)010 0)015/0)015 0/0)001 0)007/0)006 0)011/0)010
200 1)0/0)957 0/0)002 0)009/0)010 0)015/0)015 0/0)001 0)007/0)006 0)011/0)010



TABLE 4

Coe.cients of the third main and concomitant mode shapes for the beam (a/h"0)25,
¸
c
/¸"0)1)

s"3 i"1 i"2

N HM
s
/HM

cs
Hmin

n,i
/Hmin

n,ci
HM

i
/HM

ci
Hmax

n,i
/Hmax

n,ci
Hmin

n,i
/Hmin

n,ci
HM

i
/HM

ci
Hmax

n,i
/Hmax

n,ci

1 1)0/0)957 0/0 0/0)001 0/0)001 0/0 0/0)005 0/0)005
5 1)0/0)957 0/0)001 0)005/0)006 0)010/0)010 0/0)003 0)006/0)007 0)010/0)010

25 1)0/0)956 0/0)001 0)009/0)009 0)015/0)014 0/0)001 0)007/0)006 0)011/0)010
50 1)0/0)956 0/0)001 0)010/0)009 0)015/0)014 0/0)001 0)007/0)006 0)011/0)010

100 1)0/0)956 0/0 0)010/0)009 0)015/0)014 0/0)001 0)007/0)006 0)011/0)010
200 1)0/0)955 0/0 0)010/0009 0)015/0)014 0/0 0)007/0)006 0)011/0)010
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as much as they do not exceed 0)02% for the "rst, 0)17% for the second and 0)22% for the
third mode shape.

Thus, in this case we can restrict the investigations to only the "rst cycle of vibration
inasmuch as in the range 0)c)0)25, the di!erence between the main modes amplitudes of
the "rst cycle and subsequent cycles lies within the boundaries of $0)22%. In addition,
from these results it follows that in this case, the e!ect of concomitant modes of vibration on
the vibration characteristics can be neglected by virtue of the smallness of their amplitudes
on the "rst as well as on the subsequent cycles of vibration. Therefore, equations (2) and (13)
are transformed into the form

y(x, t)"w
s
(x) sinu

s
t ; (24)

y
cj

(x, t)"w
sj

(x) (P
cs

sinu
os

t#R
cs

cosu
os

t). (25)

As in this case the e!ect of concomitant modes of vibration is neglected, the maximal
de#ection of the beam main mode of vibration on the "rst half-cycle (n"1) will occur at the
moment of time t"t

2
/2, and on the second half-cycle (n"2), at the moment t"(t

2
#t

3
)/2.

Taking into account formulae (16) and (17) and equations (24) and (25) the maximal
de#ections of the beam on di!erent half-cycles is determined in the following way:

ymax (x)"w
s
(x), (26)

ymax
cj

(x)"w
sj
(x) APcs

cos
u

os
u

s

n!R
cs

sin
u

os
u

s

nB . (27)

The strain wave shape on the surface of the beam is described by equations:

e (x, t)"M
s
(x) sinu

s
t, (28)

e
c
(x, t)"fe (x,c) M

sj
(x) (P

cs
sin u

oi
t#R

cs
cosu

oi
t), (29)

where function fe (x, c) takes into account the e!ect of the crack on the strain distribution
along the cracked and crack-free (intact) surfaces of the beam (see Figure 1). On the cracked
side surface of the beam function fe (x, c) has the appearance [9]

fe (x, c)"1!exp [!h~1 Dx!¸
c
D (1)366#0)304c~1)]
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and opposite to the cracked side surface of the beam:

fe (x, c)"1#[b (c)!1] exp [!h~2 (¸
c
!x)2 (0)063#0)45c)~2 lnb (c)],

where b (c)"0)123#0)813 exp(c)#0)064 exp(7c).
The natural frequency of the sth mode shape of the beam with a closing crack is

calculated by formula [15]

u
cs
"2u

s
u

os
/ (u

s
#u

os
). (30)

The analysis of the level of non-linear distortion of the time-functions being investigated
was executed with the use of Fourier series:

F
c
"

a
0
2
#

=
+
k/1

A
k
sin (ku

c
t#j

k
), (31)

where A
k
"Ja2

k
#b2

k
, j

k
"arctg(a

k
/b

k
),

a
k
"

u
cs

n CP
tÈ

tÇ

f (x, t) cos ku
cs

tdt#P
tÊ

tÈ

f
c
(x, t) cos ku

cs
tdtD , k"0, 1, 2,2 (32)

b
k
"

u
cs

n CP
tÈ

tÇ

f (x, t) sin ku
cs

tdt#P
tÊ

tÈ

f
c
(x, t) sin ku

cs
tdtD , k"1, 2, 3,2 (33)

The instants of time t
1
, t

2
and t

3
are determined by formulae (16) and (19). Functions

f (x, t) and f
c
(x, t) in equations (32) and (33) are determined for the displacement wave

shape by equations (24) and (25); for the acceleration wave shape by second time derivative
of equations (24) and (25) and for the strain wave shape by equations (28) and (29)
respectively.

For the estimation of the level of non-linear distortion of the displacement, acceleration
and strain wave shapes, the harmonics coe$cient [4] was used:

s"
20
+
k/2

A
k
/A

1
. (34)

As can be seen from equation (34) on calculation of the harmonics coe$cient only 20
harmonics were taken into account: further increase of their number does not lead to any
essential change of the harmonics coe$cients value.

It must be emphasized that if the amplitudes of concomitant modes of vibration become
noticeable, the respective functions describing the wave shapes of displacement, acceleration
and strain will be substantially non-periodic and it is necessary to use other approaches for
the analysis of the level of their non-linearity.

5. RESULTS OF CALCULATIONS

5.1. GEOMETRICAL AND MECHANICAL CHARACTERISTICS OF THE BEAM

The geometrical characteristics of the beam are ¸/h"20, b/h"1. Crack parameters are
0)a/h)0)25; ¸

c
/¸"0)1 or ¸

c
/¸"0)5. The mass on the end is absent (m

L
"0, I

m
"0).

Young's modulus and density of the beam material as well as the ratio b/h have no in#uence
on the relative change of the VCD under consideration (in calculations they were excepted
as follows: E"200 GPa, o"7800 kg/m3, b/h"1).

The results of investigation of the most sensitive vibration characteristics of wave shape
non-linearity due to closing crack presence are presented; that is, the coe$cient a

0
and



Figure 2. The change of the relative maximal de#ection of the beam (a/h"0)25): ***, s"1, ¸
c
/¸"0)1;

}} } } , s"2, ¸
c
/¸"0)1; ) ) ) ) ) ) ) ), s"3, ¸

c
/¸"0)1; } ) } )} ) }, s"1, ¸

c
/¸"0)5.
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harmonics coe$cient s. Note that the relative amplitude of the second harmonic used in the
study [9] as a damage characteristic is 20}30% below that of the harmonics coe$cient and,
therefore, is not examined here. On the other hand, a comparatively small di!erence
between these characteristics signi"es that all other harmonics do not make a great
contribution to the value of the harmonics coe$cient.

Figures 2}6 illustrate the change of di!erent VCD along the beam length at ¸
c
/¸"0)1

for the three mode shapes and at ¸
c
/¸"0)5 for the "rst mode shape (in all cases a/h"0)25).

In these Figures and in the text, subscript &&d'' signi"es the displacement, subscript &&a'' the
acceleration, subscript &&cr'' the strain on the cracked surface of the beam, subscript &&int'' the
strain on the intact (opposite to the crack) surface of the beam.

5.2. MAXIMUM DEFLECTION OF THE BEAM

Figure 2 shows the in#uence of a closing crack on the relative maximal de#ection of the
beam. As can be seen, the change of this characteristic is a clear qualitative symptom of
fatigue damage, inasmuch as in the crack absence ymax

cj
(x)/ymax (x)"1. The farther the crack

is from the clamp, the less is the in#uence of the crack on the maximal de#ection. The
relative change of the "rst mode maximal de#ection does not exceed 10%. For higher mode
shapes it is even less. The exception in this sense presents the cross-sections in which one can
observe the discontinuities of functions ymax

cj
(x) /ymax (x). The discontinuities of respective

functions are due to the fact that the co-ordinates of the nodes of vibration do not coincide
with the half-cycles, while the crack is open or closed (Table 5).

It must be noted that all the functions being considered have the break in the cracked
cross-section at x/¸"0)1 and at 0)5. The reason for this phenomenon is the fact that
functions describing the vibration of a beam on the half-cycles while the crack is closed
(equation (2)) and open (equation (13)) are di!erent. This di!erence is due to the appearance
of additional compliance in the cracked cross-section at the half-cycle of crack opening and,



Figure 3. The relative change of the zero order (a) and harmonics (b) coe$cients along the length of the beam for
the displacement wave (key as in Figure 2).

Figure 4. The relative change of the zero order (a) and harmonics (b) coe$cients along the length of the beam for
the acceleration wave (key as in Figure 2).
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consequently, the additional angle of rotation, which causes the break of functions
ymax
cj

(x)/ymax (x) (as well as other functions) in this cross-section. A similar result was
reported by Yuen [16]. This peculiarity of the distribution functions can be used for the
determination of crack location.

5.3. DISPLACEMENT AND ACCELERATION WAVES

The distributions of the relative change of the zero order coe$cient for the displacement
and acceleration waves along the beam length (Figures 3(a) and 4(a)) are qualitatively
similar to the distributions of function ymax

cj
(x) /ymax (x) (in the crack absence



TABLE 5

Co-ordinates of the nodes of vibration and of the zero bending moment for the beam
(a/h"0)25, ¸

c
/¸"0)1)

x/¸

s ymax (x/¸)"0 ymax
cj

(x/¸)"0 Mmax (x/¸)"0 Mmax
cj

(x/¸)"0

2 0)7834 0)7814 0)2166 0)2072
3 0)5036 0)5027 0)1324 0)1289
3 0)8677 0)8675 0)4964 0)4959
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(a
0
/A

1
)
d
"(a

0
/A

1
)
a
"0). The degree of change is slightly less; up to 9% for the displacement

wave and up to 6% for the acceleration wave (these estimations were executed without
consideration of the functions behaviour in the neighbourhood of the nodes of vibration).

The distributions of the harmonics coe$cient have qualitatively another appearance
(Figures 3(b) and 4(b)). The most essential variation of the harmonics coe$cient is observed
in the vicinity of nodes of vibration where the respective functions reach maxima. They
cannot be shown in the "gures because, for example, at the second mode of vibration, the
harmonics coe$cient for the acceleration wave in the cross-section x/¸"0)782433315
reaches as astronomical value: s

a
"20544)7 (for comparison, in the cross-section

x/¸"0)782!s
a
"1)48067).

The sensitivity of zero order and harmonics coe$cients for the displacement and
acceleration waves drops as the crack is further from the clamp. The break of their
distribution functions indicates the cracked cross-section.

Large values of zero order and harmonics coe$cients in the vicinity of nodes of the
second and third mode shapes are the consequence of an interesting peculiarity of physical
behaviour of a cantilever beam with a closing crack, namely that of the non-coincidence of
the nodes of vibration co-ordinates on the half-cycles while the crack is open and closed
(Table 5). That is why, for example, if the cross-section is in the node of vibration on the
certain half-cycle and consequently its displacement will be equal to zero, then on the
subsequent half-cycle, the cross-section will not be in the node of vibration and the shape of
total cycle will be similar to the upper (or lower) half of a sinusoid.

The level of non-linear distortion of the wave shape increases monotonically as the
cross-section approaches the node of vibration causing a considerable growth of the zero
order and harmonics coe$cients. The discontinuity of distributions of the relative change of
the zero order coe$cient for the displacement and acceleration waves along the beam
length (Figures 3(a) and 4(a)) is due to the fact that these functions have a di!erent sign for
the left and for the right side of the beam.

5.4. STRAIN WAVE

The distinctive feature of the zero order coe$cient distributions along the beam length
for the strain wave is the presence of maxima in the cracked cross-sections (Figures 5(a) and
6(a)) for all modes of vibration. As can be seen, the amplitudes of the zero order coe$cient
are considerable and comparable with the amplitude of the "rst harmonic. In this case, as in
the correspondent cases of displacement and acceleration waves the discontinuity of
functions at the second and third modes of vibration takes place. The reason for this



Figure 5. The relative change of the zero order (a) and harmonics (b) coe$cients along the length of the beam for
the strain wave on the cracked surface (key as in Figure 2).

Figure 6. The relative change of the zero order (a) and harmonics (b) coe$cients along the length of the beam for
the strain wave on the intact surface (key as in Figure 2).
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discontinuity is the non-coincidence of the cross-section co-ordinates at which the bending
moment is equal to zero on di!erent half-cycles (Table 5).

The harmonics coe$cient reaches maximum values in the cracked cross-sections and in
the neighbourhoods of the cross-sections with the zero bending moment (Figures 5(b) and
6(b)). Special attention must be given to the fact that the degree of harmonics coe$cient
variation for the strain wave on the intact surface of the beam in the vicinity of cracked
cross-section increases as the crack is farther from the clamp (see Figure 6(b)). This fact
qualitatively distinguishes this characteristic from all others considered.

The maxima of the functions shown in Figures 5 and 6 in the cracked cross-section are
due to the predominant e!ect of functions fe (x, y) (see section 4), which take into account
the change of strain distribution on the upper (cracked) and lower (intact) surfaces along the
cracked beam length.
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6. COMPARATIVE ANALYSIS OF THE VCD SENSITIVITY

The analysis of the distributions of VCD along the beam length (Figures 2}6) make it
possible to determine the cross-sections in which the manifestation of one or another
characteristic is most signi"cant. For instance, for the relative change of the mode shapes
and the zero order coe$cient for the displacement and acceleration waves such cross-
sections are x/¸"0)2 and in the neighbourhood of the nodes of vibration. The harmonics
coe$cients for the displacement and acceleration waves are most sensitive in the vicinity of
the clamp and nodes of vibration. The zero order and harmonics coe$cients for the strain
wave reach maximum values in the vicinity of cross-sections with the crack and with zero
bending moment.

However, a possibility of practical implementation of the above mentioned vibration
characteristics when they are measured not far from the clamp and nodes of vibration raises
doubts since the level of vibrations of these cross-sections is vanishingly small. That is why
Figure 7 shows the dependencies of di!erent VCD upon the relative crack depth, the
measurement of which is most realizable from a practical standpoint. The exception in this
sense is only the harmonics coe$cient for the acceleration wave determined in the cross-
section x/¸"0)78 at the second mode of vibration. The amplitude of vibration of this
cross-section is equal to 1)5% of maximum amplitude of vibration of the beam. It must be
noted that the zero order coe$cient for the strain wave on the cracked surface (it is shown
without regard for the sign of the original function) as well as the harmonics coe$cient s

cr
(the absolute value is 2 times less than the zero order coe$cient; the corresponding curve is
not shown in Figure 7) are practically independent of crack size. Because of this, the noted
characteristics discussed are un"t for the damage estimation. At the same time, similar
characteristics determined on the intact surface of the beam are closely dependent on the
crack growth. Figure 7 also shows the dependencies of the relative change of natural
Figure 7. The e!ect of crack depth on the relative change of the VCD (¸
c
/¸"0)1) *d*d*,

F"ymax
cj

(x)/ymax (x), x/¸"0)2, s"1; *L*L*, F"s
a
, x/¸"1, s"1; *j*j*, F"s

a
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*K*K*, F"(a
0
/A

1
)
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1
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Figure 8. The e!ect of crack depth on the velocity of functions F(c) change (key as in Figure 7).

38 V. V. MATVEEV AND A. P. BOVSUNOVSKY
frequencies of the beam upon the crack depth. As can be seen, the in#uence of the crack on
the natural frequencies is small in comparison with the other VCDs.

In the present work, the sensitivity of the VCD means the measure of the respective
vibration characteristic change under the unitary variation of damage size. As such, when
a measure was used the velocity of functions F (c) change describing the relationship
between the relative change of the VCD and damage size:

<(c)"LF(c)/Lc. (35)

Comparative analysis of the VCD e$ciency was based on the comparison of functions<(c)
at the certain value of argument.

As can be seen from Figure 8, none of the VCD presented in Figure 7 is most sensitive
over the entire range of crack depths being investigated. The most sensitive characteristics
in the range of small cracks were found to the zero order and harmonics coe$cients for
the strain wave on the intact surface of the beam in the cracked cross-section. The sensitivity
of the relative change of functions ymax

cj
(x)/ymax (x) and harmonics coe$cients

for the acceleration wave are high in the second half of the crack size range.
However, the possibility of practical determination of the latter characteristic is very
problematical.

As a whole, VCD stated here possess su$cient sensitivity to detect small cracks.
However, as pointed out above, these characteristics were determined in the specially
selected cross-sections in which they are most sensitive. In its turn, the co-ordinates of these
cross-sections are dependent on the crack location. Thus, for the optimal use of the VCD
being considered the crack location should be known. Theoretically, the VCD (with the
exception of natural frequencies) provide such a possibility; the crack location can be judged
by the break of the distribution function, of the corresponding VCD along the beam length
or by the maximum of this function. Unfortunately, the determination of such a function in
practice is very labour-consuming and not always a feasible process.
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7. CONCLUSIONS

The method of consecutive (cycle-by-cycle) solutions of the free bending vibration
problem for a beam with a closing crack was obtained; that is the mode shape amplitudes of
the cracked beam were determined on a limited number of cycles of its vibrations.

The method made it possible to de"ne the important qualitative features of the cracked
beam behaviour, namely: the growth of concomitant modes of vibration in the process of
crack opening and closing; and each half-cycle of the beam vibration is characterized by the
non-recurrent set of amplitudes of concomitant modes of vibration. The latter may signify
that the rigorous steady state solution of such class problems does not exist even if the
damping is taken into account. The amplitudes of concomitant modes of vibration are
heavily dependent on the crack depth.

The distribution functions of the VCD based on the evaluation of the level of non-linear
distortions of the displacement, acceleration and strain waves over the beam length were
determined for three mode shapes. A closing crack essentially causes non-linearity of these
distribution functions; this fact may serve as a diagnostic indication of damage. The
distinctive features of the behaviour of distribution functions in the neighbourhood of
cracked cross-section (break or maximum) indicate the crack location. The quantitative
estimation of the functions changes as crack growth making it possible to determine the size
of crack. In such a manner, the problem of damage diagnostics can be fully solved based on
the analysis of the distribution functions.

The zero order and harmonics coe$cient for the strain wave determined in the
neighbourhood of a cracked cross-section on the intact (opposite to the crack) surface of the
beam were determined to be the most sensitive from the VCD being investigated.
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